Definitions: Probability

Philosophical Logic 2025/2026

1 Basic probabilistic notions

Definition 1.1 (Probability space). A probability space is a triple $(\Omega, \mathcal{F}, Pr)$ where:

- 1. $\Omega \neq \emptyset$ is a non-empty set, the sample space;
- 2. $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is a collection of subsets of Ω , the events, such that:
 - (a) if $A \in \mathcal{F}$, then $\Omega \setminus A \in \mathcal{F}$ (closed under complements);
 - (b) if $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$ (closed under finite unions);
- 3. Pr : $\mathcal{F} \rightarrow [0,1]$ is a function, the probability measure, such that:
 - (a) $Pr(\Omega) = 1$;
 - (b) if $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, then $Pr(A \cup B) = Pr(A) + Pr(B)$.

Definition 1.2 (Conditional probability). *Let* $(\Omega, \mathcal{F}, \Pr)$ *be a probability space and let* $A, B \in \mathcal{F}$ *with* $\Pr(B) > 0$. *The* conditional probability *of* A *given* B *is*

$$\Pr(A \mid B) := \frac{\Pr(A \cap B)}{\Pr(B)}.$$

Definition 1.3 (Chain rule). Let $(\Omega, \mathcal{F}, \Pr)$ be a probability space and let $A_1, \ldots, A_n \in \mathcal{F}$ be events such that all the conditional probabilities below are defined. The chain rule (or product rule) states that

$$Pr(A_1 \cap \cdots \cap A_n) = Pr(A_1) Pr(A_2 \mid A_1) Pr(A_3 \mid A_1 \cap A_2) \cdots Pr(A_n \mid A_1 \cap \cdots \cap A_{n-1}).$$

For n = 2 this reduces to

$$Pr(A \cap B) = Pr(A) Pr(B \mid A),$$

whenever Pr(A) > 0.

2 Probabilities on a propositional language

Definition 2.1 (Probability function on a propositional language). Let \mathcal{L} be a propositional language (closed under \neg , \land , \lor), and let \models denote classical consequence. A probability function on \mathcal{L} is a function $P: \mathcal{L} \to \mathbb{R}$ such that, for all $\varphi, \psi \in \mathcal{L}$:

- 1. $P(\varphi) \ge 0$;
- 2. if $\models \varphi$ (i.e. φ is a tautology), then $P(\varphi) = 1$;
- 3. $if \models \neg(\phi \land \psi)$ (i.e. φ and ψ are mutually exclusive), then $P(\varphi \lor \psi) = P(\varphi) + P(\psi)$. **Definition 2.2** (Uncertainty). Let P be a probability function on \mathcal{L} . For any sentence $\varphi \in \mathcal{L}$ the uncertainty (or risk of error) of φ relative to P is

$$U_P(\varphi) := P(\neg \varphi) = 1 - P(\varphi).$$

3 Probabilistic consequence relations

Definition 3.1 (Probabilistic entailment \models_P). Let Γ be a finite set of sentences of \mathcal{L} and let $\varphi \in \mathcal{L}$. We say that Γ probabilistically entails φ and write

$$\Gamma \models_P \varphi$$

iff for every probability function P on \mathcal{L} ,

$$U_P(\varphi) \leq \sum_{\gamma \in \Gamma} U_P(\gamma).$$

Definition 3.2 (Material conditional). For sentences φ , ψ in the propositional language, the material conditional $\varphi \supset \psi$ is the abbreviation $\varphi \supset \psi := \neg \varphi \lor \psi$.

Theorem 3.1 (Classical fragment (no conditionals)). Let \mathcal{L}_0 be a propositional language without the connective \rightarrow , closed under \neg , \wedge , \vee , and let \models_{CL} denote classical entailment on \mathcal{L}_0 . Then for every finite $\Gamma \subseteq \mathcal{L}_0$ and every $\varphi \in \mathcal{L}_0$:

$$\Gamma \models_{CL} \varphi \iff \Gamma \models_{P} \varphi,$$

4 Conditionals and probabilities

Theorem 4.1 (Conditional fragment and System P). Let \mathcal{L}_0 be as above and let $\mathcal{L}^{\rightarrow}$ be the language obtained by adding to \mathcal{L}_0 a binary connective \rightarrow . Consider the fragment of $\mathcal{L}^{\rightarrow}$ consisting of non-embedded indicative conditionals of the form $\varphi \rightarrow \psi$ with $\varphi, \psi \in \mathcal{L}_0$, and let P range over probability functions on $\mathcal{L}^{\rightarrow}$ satisfying Adams' thesis

$$P(\varphi \to \psi) = P(\psi \mid \varphi)$$

whenever $P(\varphi) > 0$.

Let Γ be a finite set of such non-embedded conditionals and let α be such a conditional. Then the consequence relation between conditionals induced by probabilistic entailment \models_P ,

$$\Gamma \models_P \alpha$$
,

coincides with System **P**: $\Gamma \models_P \alpha$ holds if and only if α is derivable from Γ using exactly the axioms and rules of System **P**.